ATP - Solution

100 mM Sodium salt solution

Adenosine 5'-triphosphate, Sodium salt

Catálogo Nº Apresentação Preço (R$) Comprar / Observação
NU-1010 1 ml (100 mM) Sob demanda Adicionar ao Carrinho
Structural formula of ATP - Solution (100 mM Sodium salt solution, Adenosine 5'-triphosphate, Sodium salt)
Structural formula of ATP - Solution

For general laboratory use.

Envio: shipped on gel packs

Condições de armazenamento: store at -20 °C
Short term exposure (up to 1 week cumulative) to ambient temperature possible. If stored as recommended, Jena Bioscience guarantees optimal performance of this product for 12 months after date of delivery.

Validade: 12 months

Fórmula molecular: C10H16N5O13P3 (free acid)

Peso molecular: 507.18 g/mol (free acid)

CAS#: 987-65-5

Pureza: ≥ 99 % (HPLC)

Forma: clear aqueous solution

Concentração: 100 mM ±2 %

pH: 8.0 ±0.2 (22 °C)

Propriedades espectroscópicas: λmax 259 nm, ε 15.1 L mmol-1 cm-1 (Tris-HCl pH 7.0)

Formulários:
ATP-sensitive calcium channels[1]
V-ATPases (cellular proton pumps)[2]
ATP-coupled chromatin remodelling[3]
ATP-binding cassette transporters[4]
ATP-grasp enzymes[5]
Agonistic ligand, mainly for nucleoside receptor A1
Nucleoside-triphosphates can be converted by different membrane-bound phosphatases into nucleosides acting as nucleoside receptor ligands.

Descrição:
Ultrapure ATP supplied as clear aqueous solution.

Specific Ligands: Ligand for purinergic receptors: P2X1-P2X3[6,7] P2X1/4[8] P2X4[7] P2X7[9,10,11] P2X1 - P2X7[12] P2Y1[10,14] P2Y2[13,14] P2Y11[14]

Referências selecionadas:
[1] Wang et al. (2011) The biological effect of endogenous sulfur dioxide in the cardiovascular system. Eur. J. Pharmacol. 670 (1):1.

[2] Scott et al. (2011) Duelling functions of the V-ATPase. EMBO J. 30 (20):4113.

[3] Erdel et al. (2011) Chromatin remodelling in mammalian cells by ISWI-type complexes--where, when and why≥ FEBS J. 278 (19):3608.

[4] Gatti et al. (2011) Novel insights into targeting ATP-binding cassette transporters for antitumor therapy. Curr. Med. Chem. 18 (27):4237.

[5] Fawaz et al. (2011) The ATP-grasp enzymes. Bioorg. Chem. 39 (5):185.

[6] Lambertucci et al. (2015) Medicinal chemistry of P2X receptors: Agonists and orthosteic antagonists. Curr. Med. Chem. 22 (7):915.

[7] Ralevic (2015) P2X receptors in the cardiovascular system and their potential as therapeutic targets in disease. Curr. Med. Chem. 22 (7):851.

[8] Harhun et al. (2014) ATP-evoked sustained vasoconstrictions mediated by heteromeric P2X1/4 receptors in cerebral arteries. Stroke 45 (8):2444.

[9] Facci et al. (2014) Toll-like receptors 2, -3 and -4 prime microglia but not astrocytes across central nervous system regions for ATP-dependent interleukin-1β release. Sci. Rep. 4:6824.

[10] Stolz et al. (2015) Homodimeric anoctamin-1, but not homodimeric anoctamin-6, is activated by calcium increases mediated by the P2Y1 and P2X7 receptors. Pflugers Archiv DOI:10.1007/s00424-015-1687-3.

[11] Lord et al. (2014) Pharmacology of a novel central nervous system-penetrant P2X7 antagonist JNJ-42253432. J. Pharmacol. Exp. Ther. 351 (3):628.

[12] Dal Ben et al. (2015) Purinergic P2X receptors: Structural models and analysis of ligand-target interaction. Eur. J. Med. Chem. 89:561.

[13] Xie et al. (2014) The P2Y2 nucleotide receptor mediates the proliferation and migration of human hepatocellular carcinoma cells induced by ATP. J. Biol. Chem. 289 (27):19137.

[14] Kim et al. (2002) Methanocarba modification of uracil and adenine nucleotides: High potency of northern ring conformation at P2Y1, P2Y2, P2Y4 and P2Y11 but not P2Y6 receptors. J. Med. Chem. 45:208.

Volonte et al. (2009) Membrane components and purinergic signalling: the purinome, a complex interplay among ligands, degrading enzymes, receptors and transporters. FEBS J. 276:318.

Yegutkin (2008) Nucleotide and nucleoside converting enzymes: Important modulators of purinergic signalling cascade. Biochim. Biophys. Acta 1783:673.

Hasko et al. (2007) Shaping of monocyte and macrophage function by adenosine receptors. Pharmacol.& Therapeutics 113:264.

Holland et al. (1991) Detection of specific polymerase chain reaction product by utilizing the 5'----3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. USA 88 (16):7276.

Erlich et al. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 29 (239):487.

Williams et al. (1986) Effects of purine nucleotides on the binding of [3H]cyclopentyladenosine to adenosine A1-receptors in rat brain membranes. J. Neurochem. 47 (1):88.

Sanger et al. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463.