

# **DATA SHEET**





# 5-Ethynyl-cytidine (5-EC)

| Cat. No. | Amount |
|----------|--------|
| CLK-087  | 10 mg  |



Structural formula of 5-Ethynyl-cytidine (5-EC)

For general laboratory use.

Shipping: shipped at ambient temperature

Storage Conditions: store at -20 °C

Additional Storage Conditions: store dry and under inert gas

Short term exposure (up to 1 week cumulative) to ambient temperature possible.

Shelf Life: 12 months after date of delivery

 $\label{eq:molecular formula: C11H13N3O5}$   $\label{eq:molecular Weight: 267.24 g/mol}$   $\label{eq:molecular Weight: 267.24 g/mol}$ 

Exact Mass: 267.09 g/mol

**CAS#:** 65223-78-1 **Purity:** ≥ 99 % (HPLC)

Form: solid

Color: white to off-white

Solubility: DMSO

Spectroscopic Properties:  $\lambda_{max}$  294 nm,  $\epsilon$  8.5 L mmol<sup>-1</sup> cm<sup>-1</sup> (Tris-HCl

pH 7.5)

#### **Applications:**

RNA synthesis monitoring<sup>[1]</sup>

### **Description:**

Ethynyl-labeled cytidine (5-EC) can be used as a replacement for BrU (5-Bromo-uridine) to measure *de novo* RNA synthesis in proliferating cells. 5-EC is cell permeable and incorporates into nascent RNA instead of its natural analog cytidine.

The resulting ethynyl-functionalized RNA can subsequently be detected via Cu(I)-catalyzed click chemistry that offers the choice to introduce a Biotin group (via Azides of Biotin) for subsequent purification tasks or a fluorescent group (via Azides of fluorescent dyes) for subsequent microscopic imaging<sup>[1]</sup>.

Presolski et  $al.^{[2]}$  and Hong et  $al.^{[3]}$  provide a general protocol for Cu(I)-catalyzed click chemistry reactions that may be used as a starting point for the set up and optimization of individual assays.

## Selected References:

[1] Qu et al. (2013) 5-Ethynylcytidine as a new agent for detecting RNA synthesis in live cells by click chemistry. Anal. Biochem. 434:128.