

Tag Pol Hot Start - Ab+

Heat-activatable DNA polymerase for high specificity, antibody-blocked Thermus aquaticus, recombinant, E. coli

Cat. Nº.	Amount
D POL-123XS	250 units
POL-123S	500 units
D POL-123M	1.000 units
D POL-123L	2 x 1.000 units (M)
D POL-123XL	4 x 1.000 units (M)

Unit Definition:

One unit is defined as the amount of the enzyme required to catalyze the incorporation of 10 nmoles of dNTPs into an acidinsoluble form in 30 minutes at 70 °C.

Concentration:

5 units/µL

Shipping:

Shipped on blue ice

Storage Conditions:

Store at -20 °C

For in vitro use only!

Additional Storage Conditions:

Avoid freeze/thaw cycles

Shelf Life:

12 months

Kit contents:

Tag Pol Hot Start (blue cap)

5 units/µl Taq Pol Hot Start in Tris-HCl pH 8.0 (25°C), KCl, EDTA, DTT, 50% (v/v) Glycerol, and stabilizers.

Tag Reaction Buffer complete (red cap) - 10x conc. Tris-HCl pH 8.5 (25°C), KCl, 20 mM MgCl₂.

MgCl₂ Stock Solution (yellow cap)

25 mM MgCl₂.

Description:

Hot Start Pol provides improved specificity and sensitivity when amplifying low-copy-number targets in complex backgrounds or when prolonged room-temperature set up is required. The polymerase activity is blocked at ambient temperature and switched on automatically at the onset of the initial denaturation. The thermal activation prevents the extension of nonspecifically annealed primers and primer-dimer formation at low temperatures during PCR setup. The enzyme catalyzes the polymerization of nucleotides into duplex DNA in 5' \rightarrow 3' direction in the presence of magnesium. It also possesses a 5' \rightarrow 3' polymerization-dependent exonuclease replacement activity but lacks a $3' \rightarrow 5'$ exonuclease activity.

Activation step:

Hot Start Pol do not require a prolonged heating or denaturing step. The polymerase inhibiting antibody is quickly released at the increased temperature of the hot start cycle.

PCR Reaction Setup

The PCR procedure below shows appropriate volumes for a single 50 µL reaction. For multiple reactions, prepare a master mix of components common to all and then dispense appropriate volumes into each PCR reaction tube prior to adding template DNA and primers.

Thaw, mix, and briefly centrifuge each component before use.

Add the following components to a microcentrifuge tube:

1. Prepare PCR master mix

Note: Consider the volumes for all components listed next steps to determine the correct amount of water required to reach your final reaction volume.

Components	50 µL rxn	[final]
Water, grade PCR	To 50 μL	
10x Reaction Buffer	5 µL	1X
dNTP (Mix 10 mM)	1 µL	200 µM
Taq Pol Hot Start (5U/ μL)	0,25 - 0,5 µl	1,25 - 2,5 U/reaction

Mix and briefly centrifuge the components.

2. Add template DNA and primers

Components	50 μL rxn	[final]
Foward primer (10 µM)	0,5 - 2,5 μl	0,1 – 0,5 μM
Reverse primer (10 µM)	0,5 - 2,5 μl	0,1 – 0,5 μM
DNA template		10 pg – 1 µg**

**genomic DNA: 1 ng-1µg; plasmidial or viral DNA: 1 pg-1 ng

Cap each tube, mix, and briefly centrifuge the content.

cellco

cellco

cellco

•cellco •cellco cellco

DATA SHEET

Taq Pol Hot Start - Ab+

Heat-activatable DNA polymerase for high specificity, antibody-blocked Thermus aquaticus, recombinant, E. coli

3. Optimization of MgCl₂ concentration:

•cellco

The 10x reaction buffer contain 20 mM $MgCl_{2}$, a recommended concentration for most applications. For an individual optimization add MgCl₂ stock solution as shown in the table below.

MgCl ₂ Final Concentration	2,5 mM	3 mM	4 mM
MgCl₂ stock volume to 50 µl	1.0 µl	2 µl	4 µl

4. Incubate reactions in a thermal cycler.

Recommended cycling conditions:

Step		Temp.	Time
Initial denaturation		95 °C	2 - 5 min
	Denaturation	95 °C	15 - 30 sec
30 cycles	Annealing ¹	45-68 °C	15 - 30 sec
	Elongation ²	72 °C	1 min/kbp
Final extension (optional)		72 °C	1 - 2 min/kbp
Hold		4 - 8 °C	

1)The annealing temperature depends on the melting temperature of the primers used.

2)The elongation time depends on the length of the fragments to be amplified. A time of 1 min/kb is recommended.

For optimal specificity and amplification an individual optimization of the recommended parameters may be necessary for each new template DNA and/or primer pair.

