















# DATA SHEET





# **ATP Solid (>98%)**

Adenosine - 5'-triphosphate, Sodium salt

| Cat. N°.   | Amount |
|------------|--------|
| □ NUC-203S | 1 g    |
| □ NUC-203M | 10 g   |
| □ NUC-203L | 100 g  |

Structural formula of ATP Solid

#### For in vitro use only!

#### **Shipping:**

Shipped on blue ice

# Storage Conditions:

Store at -20 °C

# **Additional Storage Conditions:**

Short term exposure (up to 1 week cumulative) to ambient temperature possible.

#### **Shelf Life:**

12 months

#### **Molecular Formula:**

 $C_{10}H_{16}N_5O_{13}P_3$  (free acid)

# **Molecular Weight:**

507.18 g/mol (free acid)

#### **Exact Mass:**

507.00 g/mol (free acid)

#### CAS#:

51963-61-2

#### **Purity:**

≥ 98 % (HPLC)

#### Form:

lyophilised

### **Spectroscopic Properties:**

 $\lambda_{max}$  = 259 nm;  $\epsilon$  = 15.1 mmol<sup>-1</sup>.cm<sup>-1</sup> (Tris-HCl pH 7.0)

# Applications:

ATP-sensitive calcium channels[1]

V-ATPases (cellular proton pumps)[2]

ATP-coupled chromatin remodelling[3]

ATP-binding cassette transporters<sup>[4]</sup>

ATP-grasp enzymes[5]

Agonistic ligand, mainly for nucleoside receptor A1 Nucleosidetriphosphates can be converted by different membranebound phosphatases into nucleosides acting as nucleoside receptor ligands.

# **Specific Ligands:**

Ligand for purinergic receptors:

P2X1-P2X3<sup>[6,7]</sup>

P2X1/4<sup>[8]</sup>

P2X4<sup>[7]</sup>

 $P2X7^{[9,10,11]}$ 

P2X1 - P2X7<sup>[12]</sup>

P2Y1<sup>[10,14]</sup>

P2Y2<sup>[13,14]</sup>

P2Y11<sup>[14]</sup>

#### **Quality Control Specifications:**

In vitro transcription (T7 RNA polymerase): visible RNA fragments after 5 min incubation, Dnases, RNases, Nicking Activity: not detectable, Proteases: not detectable

# **Selected References:**

[1] Wang et al. (2011) The biological effect of endogenous sulfu dioxide in the cardiovascular system. Eur. J. Pharmacol. **670 (1)**:1. [2] Scott et al. (2011) Duelling functions of the V-ATPase. EMBO J. **30 (20)**:4113.

[3] Erdel et al. (2011) Chromatin remodelling in mammalian cells by ISWI-type complexes–where, when and why? FEBS J. **278** (19):3608.

[4] Gatti et al. (2011) Novel insights into targeting ATP-binding cassette transporters for antitumor therapy. Curr. Med. Chem. **18 (27)**:4237.

[5] Fawaz et al. (2011) The ATP-grasp enzymes. Bioorg. Chem. **39 (5)**:185.

[6] Lambertucci et al. (2015) Medicinal chemistry of P2X receptors: Agonists and orthosteic antagonists. Curr. Med. Chem. **22** (7):915.

[7] Ralevic (2015) P2X receptors in the cardiovascular system and their potential as therapeutic targets in disease. Curr. Med. Chem. **22** (7):851.

[8] Harhun et al. (2014) ATP-evoked sustained vasoconstrictions mediated by heteromeric P2X1/4 receptors in cerebral arteries. Stroke **45 (8)**:2444.

